

CryoNet

Network of Cryospheric Surface Observations

Wolfgang Schöner

Central Institute of Meteorology and Geodynamics Vienna, Austria Since Sept 2014: University of Graz, Department of Geography and Regional Research, Graz, Austria

CryoNet within GCW

Motivation for CryoNet

M. Zemp, 2011

CryoNet will link with different cryospheric observational networks to achieve its comprehensive potential through

- Extensive monitoring of the cryosphere through harmonized measurements
- Providing cryospheric-data for improved process understanding and modelling
- Providing calibration and validation data for satellite measurements
- Linking cryospheric ground truth observations to cryospheric models
- Training for cryospheric observations
- Standardized practices for cryospheric observations
- Long-term, sustainable observing and monitoring.

CryoNet activities

Coordination Capacity building

CryoNet activities so far

- 1st CryoNet WS (Nov. 2012, Vienna, Austria)
- Questionaires
- Cryosphere Station inventory
- Primer to GCW CryoNet (draft)
- 2nd CryoNet WS (Dec. 2013, Beijing China)
- CryoNet team meeting (Reykjavik, Island, Jan 2014)
- Joint CryoNet and Portal team meeting (Davos, June 2014)
- Questionaire at Website

WWO Global Crycephone 300ch ... Copplet Daft 25-05-2015

Primer to the Global Cryosphere Watch Surface-Based Observational Network -CryoNet

Wolfgang Schöner¹, Eric Brun, Michele Citterio, Charles Eierz, Barry Goodison, Jeff Key, Tetsuo Ohata, Borsteinn, Borsteinsson, ...

> ³Zentralanstalt for Mitteerelegie und Geodynamik (ZAMG), Vienna, Austria ² Mittee Trence, Pais, France ³ Geological Survey of Domark and Groonland (2013), Coponhagen, Danmark ⁴ Institute for Snew and Avalanche Krossenh Str., Daves, Switzeland ² Stwinzenmontal Canada, , Canada ⁹ NORA, USA ⁷, Japan ³ WSL - Institute for Snew and Avalanche Krossenh Str., Daves, Switzeland ⁹ Icelandic Mitteorelegical Office, Kryelank, Iceland

> > Version 0.2, 15 June 2013

1

The site types of CryoNet

Baseline Sites

- Single sphere
- Compliant with CryoNet agreed practices
- Target of long-term continous

Reference Sites

- Single sphere
- Compliant with CryoNet agreed practices
- Calibration/Validation
- Long-term financial commitment
- Long-term continous
- near real time availability of data where possible

Integrated Sites

- Multi sphere
- Compliant with CryoNet agreed practices
- Calibration/Validation
- Long-term financial commitment
- Strong research focus
- Training
- Onsite staff

Initial CryoNet stations

-						
ID	Station \$	Elevation \$	Country \$	Region 🗢	Type 🜲	
1	Sodankylä	180m	Finland	Europe	Integrated	
2	Zackenberg	0-1500m	Denmark	Europe	Integrated	
3	Sonnblick	3105m	Austria	Europe	Integrated	
4	Weissfluhjoch/Davos	2540m	Switzerland	Europe	Integrated	
5	SIGMA-A	1490m	Greenland	North America	Baseline	
6	PROMICE (20+ stations across Greenland)	270-1850m	Greenland	North America	Baseline	
7	Eureka	610m	Canada	North America	Reference	
8	Barrow	11m	USA, Alaska	North America	Reference	
9	Tiksi	n/a	Russia	Russia	Integrated	
10	Cape Baranova	30m	Russia	Russia	Baseline	
11	Tianshan	2130m	China	Asia	Integrated	
12	Mt. Everest	5210m	China	Asia	Baseline	
13	Yakutsk	220m	Russia	Russia	Integrated	
14	Dome C	3233m	n/a	Antarctica	Reference	
14						

www.globalcryospherewatch.org

CryoNet sites must meet a minimum set of requirements: (extraction only, not full list!)

- 1. The site location is chosen such that, for the variables measured, it is spatially/temporally representative for measuring one or several components of the cryosphere.
- 2. CryoNet sites have to be active and perform sustained observations according to CryoNet agreed practices.
- 3. Technical personnel are trained in the operation of the equipment at the site.
- 4. For reference and integrated sites, there is an intent by the responsible agencies to long-term observations of at least one of the CryoNet variables.
- 5. The relevant CryoNet observations are of documented quality. The measurements are made and quality controlled according to CryoNet agreed practices.

CryoNet primer

and the

WWO diebal Crycaphere Wylch ... Cryptics dwit 25-05-2015

Primer to the Global Cryosphere Watch Surface-Based Observational Network -

CryoNet

Wolfgang Schöner¹, Eric Brun, Michele Citterio, Charles Eierz, Barry Goodison, Jeff Key, Tetsuo Obata, Borsteion, Borsteinsson, ...

> ³Zontralanstalt für Mictosrologic und Goodynamik (ZAMG), Vionna, Austra ³ Mictos France, Paris, France ³ Goological Survey of Donmark and Groonland (GBUS), Coponhagon, Danmark ⁴ Institute for Snow and Avalanche Research SUP, Daves, Switzerland ³ Breitenmental Canada, , Canada ⁹ NOAA, USA ⁷, Japan ³ WSL - Institute for Snow and Avalanche Research SUP, Daves, Switzerland S Icolandie Mictosrological Office, Reyclavik, Icoland

> > Version 0.2, 15 June 2013

International CryoNet team

Name	Affiliation		
Wolfgang Schöner	ZAMG, Austria		
(Chair)			
Matthias Bernhardt	LMU, Germany		
Michele Citterio	GEUS, Denmark		
Charles Fierz	WSL / SLF,		
	Switzerland		
Christophe Genthon	LGGE, France		
Barry Goodison	Free Spirit, Canada		
Gino <u>Casassa</u>	Geostudios, Chile		
Kaji Luojus	FMI, Finland		
Jeff Key (GCW)	NOAA, US		
Sandy Starkwater	NOAA,US		
Vasily Smolyanitsky	AARI, Russia		
Hironori Yabuki	JAMSTEC, Japan		
Porsteinn Porsteinsson	IMO, Iceland		
Cunde Xiao	CMA, China		
Permafrost	??? – IPA		
Cryospheric modelling			
Remote sensing	Affiliation		

- Implementation of tiered network
- ✓ High need for standards and guidelines in cryospheric observations (many counts)
- ✓ Serve science and practitioners
- Cooperate with existing networks
- ✓ Fill gaps in existing networks
- ✓ Data policy and data provision

CryoNet sites must meet a minimum set of requirements:

- 6. Associated standard meteorological in situ observations, when necessary for the accurate determination and interpretation of the GCW variables, are made with documented quality.
- 7. The data and metadata including changes in instrumentation, traceability, observation procedures are submitted to a data centre, which is interoperable with the GCW portal in a timely? manner. Metadata are also provided to the WMO Operational Information Resource (WIR) and maintained regularly.
- 8. The station characteristics and observational programme are kept up-to-date in the GCW station information database.
- 9. A station logbook for observations and activities that may affect observations is maintained and used in the data validation process.
- 9. User needs have been considered in the observation design process.

